作为教学的一部分,Gilman和学生一起开了一家「诊所」,主要帮助人们将有害记录从其文件中去除。她介绍了她的一个客户——一个有着14次被捕经历的非裔美国人,而其被捕的原因是没有可永久居住的房屋。她帮助他将相关的被捕经历从文件中彻底抹去了。但是很多情况下,只是将个人记录中的污点去除并没有什么实际意义。当他们的逮捕记录被去除以后,他们也会从相应州的公共系统的数据库中消失。有时候即便是官方纠正过,但是错误和旧信息仍然会存在于档案中没有更新。如果被捕记录已经和私人数据经纪人分享,那么这些经纪人也很可能不会关注这些信息是否有被更新。在这些情况下,这些州就只是名义上遵从公平信息原则。他们允许人们可以看到这些收集的数据,并且对数据进行更正和更新。但是如果这些纠正的数据出现在更新以后,这就意味着你的这次改变其实并没有什么实际意义。
大数据的这些隐患已经引起了美国联邦贸易委员会(Federal Trade Commission)的注意,该委员会在去年九月开始了一个关于该主题的工作小组,小组成员讨论了大数据分析将如何包括或者排除某些特定的人群。一些评论人警告道,算法有可能根据别人的行为来剥夺其他人的机会。但是,如果善加利用的话,大数据也可能为低收入用户带来福音。例如,一些公司通过分析一些公司数据来计算低收入用户的信用分数,使得那些在传统信用体系下信用分数不高、但是又具有其他有价值信息(例如按时付款、拥有汽车等)的人们可以获得更高的信用分数。
毫无疑问,算法可以使得人们做出的决定更加精确有效。大数据具有提高人们生活质量的能力,而且它也确实做到了。但是如果缺少了人情味,算法也可能因为只追求效率而使得社会的一些群体更加边缘化。
小编推荐阅读