?大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣] 1. 概念:数据降维的数学方法 定义 主成分分析(PCA)是一种统计方法,通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这组新的变量称为主成分。 大白话,PCA能够从数据
?大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣]
定义
特点
应用领域
介绍一个用于主成分分析的 Python 库
PCA的核心是构建在sklearn功能之上,以便在与其他包结合时实现最大的兼容性。
除了常规的PCA外,它还可以执行SparsePCA和TruncatedSVD。
其他功能包括:
pip install pca
from pca import pca # 导入PCA模块
import numpy as np
import pandas as pd
# Dataset
from sklearn.datasets import load_iris # 导入鸢尾花数据集
# 从鸢尾花数据集中创建DataFrame对象
X = pd.DataFrame(data=load_iris().data, columns=load_iris().feature_names, index=load_iris().target)
# 初始化PCA模型,指定主成分数量为3,并进行数据标准化
model = pca(n_components=3, normalize=True)
# 拟合并转换数据
out = model.fit_transform(X)
# 创建只包含方向的图
fig, ax = model.biplot(textlabel=True, legend=False, figsize=(10, 6))
下面我们使用 sklearn 里面的 PCA 工具,在一组人脸数据上直观感受下,
# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn.decomposition import PCA
# 加载Olivetti人脸数据集
faces_data = fetch_olivetti_faces()
X = faces_data.data
# 可视化原始图像和对应的主成分
n_images = 4 # 每行显示的图像数量
n_rows = 4 # 总共的行数
fig, axes = plt.subplots(n_rows, 2*n_images, figsize=(16, 10), subplot_kw={'xticks':[], 'yticks':[]})
# 使用PCA降维
n_components = 50 # 设置PCA保留的主成分数量
pca = PCA(n_components=n_components, whiten=True, random_state=42)
X_pca = pca.fit_transform(X)
for r in range(n_rows):
for i in range(n_images):
index = r * n_images + i
axes[r, 2*i].imshow(X[index].reshape(64, 64), cmap='gray')
axes[r, 2*i].set_title(f'大侠 {index+1} 图像', fontproperties='SimHei') # 手动设置字体
axes[r, 2*i+1].imshow(pca.inverse_transform(X_pca[index]).reshape(64, 64), cmap='bone')
axes[r, 2*i+1].set_title(f'大侠 {index+1} 主成分', fontproperties='SimHei') # 手动设置字体
plt.tight_layout()
plt.show()
我们保留了前 50 个主成分
通过可视化对比图直观感受下,信息保留了多多少,损失了多少
通过对比图可以看到,某一张人脸的基本信息都保留了下来
如果保留 前 100 个主成分,那就更接近原始图片了
你也可以试下,保留 1 个主成分会怎样?通过保留的信息你还认得出来哪过大侠是哪过吗
烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;我们一起,让更多人享受智能乐趣
同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖
小编推荐阅读