您的位置:首页 > 软件教程 > 教程 > 昇腾开发全流程 之 MindSpore华为云模型训练

昇腾开发全流程 之 MindSpore华为云模型训练

来源:好特整理 | 时间:2024-05-26 08:53:46 | 阅读:97 |  标签: S in 开发 华为   | 分享到:

学会如何安装配置华为云ModelArts、开发板Atlas 200I DK A2, 并打通一个训练到推理的全流程思路。 > 在本篇章,我们首先开始训练阶段!

前言

学会如何安装配置华为云ModelArts、开发板Atlas 200I DK A2,
并打通一个训练到推理的全流程思路。

在本篇章,我们首先开始训练阶段!

训练阶段

A. 环境搭建

MindSpore 华为云 模型训练

Step1 创建OBS并行文件

  1. 登录华为云 -> 控制台 -> 左侧导航栏选择“对象存储服务 OBS” ->
    在左侧导航栏选择“桶列表” -> 单击右上角“创建桶”
    如下图所示:
    昇腾开发全流程  之  MindSpore华为云模型训练
  2. 在左侧列表中的“并行文件系统” -> 单击右上角“创建并行文件系统”。
    如下图所示:
    昇腾开发全流程  之  MindSpore华为云模型训练
    进行以下配置:
    昇腾开发全流程  之  MindSpore华为云模型训练

主要参数信息如下,其余配置请保持默认配置
区域 :选择“ 华北-北京四
文件系统名称:自定义,本例使用modelarts0009
(请使用modelarts作为文件系统前缀,注意名称为全局唯一)
数据冗余存储策略 :选择“ 单AZ存储
策略 :选择“ 私有

Step2 上传数据文件至OBS并行文件系统

  1. 点击已创建的并行文件系统 -> 点击“新建文件夹”
    输入文件夹的名称,这里命名为input
    昇腾开发全流程  之  MindSpore华为云模型训练
  2. 进入该文件夹中 -> 点击“上传文件”:
    将准备好的项目工程文件压缩包上传至该OBS中。

Step3 基于ModelArts创建Notebook编程环境

  1. 在“全局配置”页面查看是否已经配置授权,允许ModelArts访问OBS:
    登录华为云 -> 控制台 -> 左侧导航栏选择“ModelArts” -> 在左侧导航栏选择“全局配置” -> 单击“添加授权”
    首次使用ModelArts:直接选择“新增委托”中的“普通用户”权限
    昇腾开发全流程  之  MindSpore华为云模型训练

  2. 登录华为云 -> 控制台 -> 左侧导航栏选择“ModelArts” -> 在左侧导航栏选择“开发环境”-> “Notebook” -> 点击“创建”
    进行以下配置:

主要参数信息如下,其余配置请保持默认配置
名称:自定义,本例使用notebook-test
自动停止:自行选择,本例选择4小时
镜像 :选择“公共镜像”,并选择“ mindspore_1.10.0-cann_6.0.1-py_3.7-euler_2.8.3
资源类型:选择“公共资源池”
磁盘规格 :使用 50 GB

Step4 为Notebook编程环境添加训练阶段项目工程文件

  1. 点击已创建的Notebook -> “存储配置” -> “添加数据存储”
    进行以下配置:
    昇腾开发全流程  之  MindSpore华为云模型训练

本地挂载目录 :自定义创建本地挂载目录,本例使用 /data/input
存储位置 :选择所创建的并行文件系统(本例选择已创建的 moderarts0009 ),以及数据集所在的目录 input

  1. 返回Notebook界面 -> 点击“打开”notebook-test ->
    打开“ Terminal ”命令行终端界面 ->
    执行以下命令,创建用于测试的test文件
    touch /data/input/test
    再执行以下命令,可以看到你刚创建的test文件&先前上传的文件
    ls /data/input

  2. 上传
    这里选择 OBS文件上传
    因为这里 本地上传 限制为100M文件。
    昇腾开发全流程  之  MindSpore华为云模型训练

  3. 解压
    打开“ Terminal ”命令行终端界面 ->
    执行以下命令,查看是否在正确的路径下
    pwd
    ls -l
    执行以下命令,解压项目工程文件压缩包
    (这里以工业质检Unet为例,具体代码可参考文末 学习资源推荐
    unzip unet.zip
    unzip unet_sdk.zip

  • 训练阶段 工程 目录结构 如下:
    ├──unet
    	├──data                            // 预处理后的数据集文件夹
    	├──raw_data                        // 原始数据集
        ├──out_model                       // 模型导出保存文件夹
        ├──pred_visualization              // 可视化图片保存文件夹(需要自己创建)
        ├──src                             // 功能函数
        │   ├──unet_medical                   // U-Net网络
        │   ├──unet_nested                    // U-Net++网络
        │   ├──config.py                      // 配置文件
        │   ├──data_loader.py                 // 数据加载
        │   ├──eval_callback.py               // 训练时评估回调
        │   ├──loss.py                        // 损失函数
        │   ├──utils.py                       // 工具类函数
        ├──draw_result_folder.py           // 文件夹图片可视化
        ├──draw_result_single.py           // 单张图片可视化
        ├──eval.py                         // 模型验证
        ├──export.py                       // 模型导出,ckpt转air/mindir/onnx
        ├──postprocess.py                  // 后处理
        ├──preprocess.py                   // 前处理
        ├──preprocess_dataset.py           // 数据集预处理
        ├──train.py                        // 模型训练
        ├──requirements.txt
    
  • 模型转换 工程 目录结构 如下:
    ├── unet_sdk
        ├── model
        │   ├──air2om.sh                     // air模型转om脚本
        │   ├──xxx.air                       //训练阶段导出的air模型
        │   ├──aipp_unet_simple_opencv.cfg   // aipp文件
    

注:
接下来就可以开始旅程,进入训练阶段。

若中途暂停实验,记得做停止资源操作,消耗最少费用;
若返回继续实验,再次启动Notebook编程环境;
若完成了本实验,最后是释放资源操作,为了停止计费。

一. 配置文件参数和数据预处理

MindSpore 数据集预处理preprocess_dataset.py文件需调用如下脚本:

文件参数脚本src/config.py文件。

文件参数脚本为src/config.py,包括
unet_medical,
unet_nested,
unet_nested_cell,
unet_simple,
unet_simple_coco
共5种配置,表示模型与数据集之间的组合。
包含超参数、数据集路径等文件参数

Step 运行脚本

  1. 新建NoteBook中:查看是否在工程目录unet/路径下
    !pwd

  2. 进入NoteBook中:运行示例
    !python3 preprocess_dataset.py --data_url=./data/
    其中--data_url:数据集预处理后的保存路径。

  • 预计数据集预处理所需时间约为10分钟。
    预处理完的数据集会保存在/unet/data/文件夹下。
    输出结果:
    昇腾开发全流程  之  MindSpore华为云模型训练

二. 模型训练

MindSpore模型训练 需调用如下脚本:

preprocess_dataset.py:将类coco数据集 转化成 模型训练需要数据格式。
src/unet_xxx/:存放 unet/unet++ 模型结构。
src/data_loader.py:存放 数据加载功能函数。
src/eval_callback:存放 cb 函数,用于训练过程中进行eval.
src/utils.py: mindspore 自定义 cb 函数,自定义 metrics 函数。
train.py

Step 运行脚本

  1. 进入NoteBook中:运行示例
    !python train.py --data_url=./data/ --run_eval=True
    其中--data_url: 数据集输入路径。
    其中--run_eval: True 表示训练过程中同时进行验证。
  • 预计模型训练所需时间约为36分钟。
    输出结果:
    昇腾开发全流程  之  MindSpore华为云模型训练
    昇腾开发全流程  之  MindSpore华为云模型训练

三. 模型推理

MindSpore模型推理 需调用如下脚本:

src/unet_xxx/:存放unet/unet++模型结构。
src/data_loader.py:存放数据预处理,数据加载功能函数。
src/utils.py:mindspore自定义cb函数,自定义metrics函数。
eval.py

Step 运行脚本

  1. 进入NoteBook中:运行示例
    !python eval.py --data_url=./data/ --ckpt_path=./ckpt_0/best.ckpt
    其中--data_url:数据集输入路径。
    其中--ckpt_path:ckpt 读取路径
  • 预计模型推理所需时间约为2分钟。
    输出结果:
    昇腾开发全流程  之  MindSpore华为云模型训练
    昇腾开发全流程  之  MindSpore华为云模型训练
    注:
    IOU(Intersection over Union)是一个度量函数,
    用来描述两个物体边界框的重叠程度(取值范围为[0,1]),
    重叠的区域越大,IOU值就越大。

四. 结果可视化

可以通过画图的方式将图像的结果可视化,方便查看。
可视化方法有两种。

方法一 单张图片可视化

draw_result_single.py: 单张图片可视化
输出单张图片的裁剪画图结果crop_plot.png和模型预测的结果predict_plot.png。

Step 运行脚本

  1. 查看工程目录unet/路径下
    确保已经事先创建好
    可视化图片保存文件 pred_visualization文件夹

  2. 进入NoteBook中:运行示例
    !python draw_result_single.py --data_url=./data/SW1hZ2VfMjAyMTA3MjcxNTEzMzYzNzk --save_url=./pred_visualization --ckpt_path=./ckpt_0/best.ckpt
    其中--data_url:数据集输入路径(到单张图像)。
    其中--save_url:输出图像保存路径。
    其中--ckpt_path:ckpt读取路径。

  • 单张图片可视化所需时间约为1分钟。
    可视化完的图片会保存在/unet/pred_visualization文件夹下。
    输出结果:
    昇腾开发全流程  之  MindSpore华为云模型训练
    昇腾开发全流程  之  MindSpore华为云模型训练
    昇腾开发全流程  之  MindSpore华为云模型训练

方法二 文件夹图片可视化

draw_result_folder.py: 文件夹图片可视化
输出文件夹内图片的模型预测结果predict.png。

Step 运行脚本

  1. 查看工程目录unet/路径下
    确保已经事先创建好
    可视化图片保存文件 pred_visualization文件夹

  2. 进入NoteBook中:运行示例
    !python draw_result_folder.py --data_url=./data/ --save_url=./pred_visualization --ckpt_path=./ckpt_0/best.ckpt
    其中--data_url:数据集输入路径(到图像文件夹)。
    其中--save_url:输出图像保存路径。
    其中--ckpt_path:ckpt读取路径。

  • 文件夹图片可视化所需时间约为10分钟。
    可视化完的图片会保存在/unet/pred_visualization文件夹下。
    输出结果:
    昇腾开发全流程  之  MindSpore华为云模型训练

五. 模型保存

如果想在昇腾AI处理器上执行推理,
可以通过网络定义和CheckPoint生成AIR格式模型文件。

Step 运行脚本

  1. 进入NoteBook中:运行示例
    !python export.py --ckpt_file="./ckpt_0/best.ckpt" --width=960 --height=960 --file_name="out_model/unet_hw960_bs1" --file_format="AIR"
    其中–-ckpt_file: ckpt路径。
    其中--width: 模型输入尺寸。
    其中--height: 模型输入尺寸。
    其中--file_name: 输出文件名。
    其中--file_format: 输出格式,必须为[“ONNX”, “AIR”, “MINDIR”]。
  • 模型保存即导出模型的输出结果在out_model/unet_hw960_bs1.air
    最后将导出的模型下载至本地,供后续推理阶段实验使用:
    右键 -> Download
    昇腾开发全流程  之  MindSpore华为云模型训练

六. 模型转换

此处模型转换需要用到ATC工具。
详细内容&错误码请参考 昇腾官网文档-使用ATC工具转换模型

Step1 上传air模型

  • 将训练阶段实验模型保存的 air模型 上传至华为云ModelArts的unet_sdk/model/目录下

这里因为模型中有optype[ArgMaxD],因此需要在Ascend910系列芯片上执行模型转换才能成功。
(此次华为云ModelArts使用的正是Ascend910A)
而一般情况,模型训练完进行的模型转换是可以选择在开发者套件(Ascend310系列芯片)和Ubuntu系统中执行的。
(具体方法请参考 昇腾官网文档-转换模型 )

Step2 模型转换命令

  • 打开unet_sdk/model/air2om.sh文件
    使用atc命令如下,可根据实际开发情况进行修改。
atc --framework=1 --model=unet_hw960_bs1.air --output=unet_hw960_bs1 --input_format=NCHW --soc_version=Ascend910A --log=error --insert_op_conf=aipp_unet_simple_opencv.cfg

本实验将 训练阶段 实验 模型保存 air模型 转为昇腾Al处理器支持的 om格式离线模型
注意:air 模型转 om 只支持静态 batch,这里 batchsize=1。
其中--framework:原始框架类型。
其中--model:原始模型文件路径与文件名。
其中--output:转换后的离线模型的路径以及文件名。
其中--input_format:输入数据格式。
其中--soc_version:模型转换时指定芯片版本。
这句话指的是当前执行模型转换时候所在机器的芯片版本 ,可通过命令行终端输入 npu-smi info 查看)

其中--log:显示日志的级别。
其中--insert_op_conf:插入算子的配置文件路径与文件名,这里使用AIPP预处理配置文件,用于图像数据预处理。

Step3 运行脚本

  1. 确保在工程目录unet_sdk/model/路径下,首先查看文件权限
    ls -l
    (如果文件权限列中没有x,你才需要继续下一命令赋予它执行权限)
    输入
    chmod +x air2om.sh

  2. 运行示例
    输入
    ./air2om.sh

  • 输出结果:
    昇腾开发全流程  之  MindSpore华为云模型训练

注:
到此我们在华为云上使用MindSpore的训练阶段实验就结束了。
有了导出的air模型及其模型转换出的om模型,我们就可以继续进入下一篇章: AscendCL推理阶段

结束后记得 及时关闭云上环境 ,避免资源浪费和产生额外的费用!!!

学习资源推荐

  • 昇思官网教程1.9:模型训练
  • GitHub:mindspore-ai / models
小编推荐阅读

好特网发布此文仅为传递信息,不代表好特网认同期限观点或证实其描述。

相关视频攻略

更多

扫二维码进入好特网手机版本!

扫二维码进入好特网微信公众号!

本站所有软件,都由网友上传,如有侵犯你的版权,请发邮件[email protected]

湘ICP备2022002427号-10 湘公网安备:43070202000427号© 2013~2024 haote.com 好特网